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Abstract

One of the major applications of the Domain Decomposition TimeMarch-
ing Algorithm is the coupling of the Navier-Stokes systems with Boltzmann
equations in order to compute transitional 
ows. Another important ap-

plication, is the coupling of a global Navier-Stokes problem with a local
one in order to use di�erent modelizations and/or discretizations. Both of
these applications involve a global Navier-Stokes systems with non standard
boundary conditions. The purpose of this work is to prove, using the classical
Leray-Schauder theory, that these boundary conditions are admissible and

lead to a well posed problem.
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1 Introduction

In this paper we study the Navier-Stokes equations with the new boundary

conditions introduced by the application of the Domain Decomposition Time

Marching Algorithm ( [6], [9], and [10]). These boundary conditions are of

slip type , they could appear either by the application of the Domain Decom-

position Time Marching Algorithm to a Navier-Stokes problem ([9] and [10]),

or to a Navier-Stokes/Boltzmann coupling ([7] and [9]). In the latter case,

they are similar to the analytical slip boundary conditions introduced in [5],

which are derived from kinetic theory in order to replace solving Boltzmann

equations by solving Navier-Stokes equations in the transitional regime.
We study here only the stationary problem. The treatment of the time

dependent problem will follow using the same ideas developed here (see [9]),
and the classical proofs for the standard boundary conditions (see [1]-[3],
and [4]). We begin by describing the strong formulation of the problem in
the �rst paragraph, then we set the preliminary results necessary for our

study. In the third paragraph we show the equivalence of the strong and the
weak formulations under some regularity hypothesis, from which we deduce
the admissible boundary conditions. We present, then, the study of the
stationary problem. Paragraph 6, deals with the uniqueness results when
the data are su�ciently small. Finally, we present, in the last paragraph,

some conclusions.

2 Motivations

2.1 The general coupling strategy

For coupling external Navier-Stokes equations, with local Navier-Stokes equa-

tions (dense regimes) or local Boltzmann equations (transitional regimes), we

introduce two domains, a global one 
, a local one 
V included in 
, and
an interface �i (Fig. 1 in which �e denotes �1). The global solution W on

 and the local solution Uloc on 
V , are matched by the following boundary
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Figure 1: The global geometry

conditions, inspired of Schwarz overlapping techniques :

8>>>>>><
>>>>>>:

W = given imposed value on �1;
n � �(W ) � � = n � �(Uloc) � � on the body �o; (equality of friction forces)
q(W ) � n+ n � �(W ) � v = q(Uloc) � n on �o; (equality of total heat 
uxes)
v � n = 0 on �o;

Uloc = 0 on �o; Uloc = W on the interface �i:

Above, n � � � n and n � � � � respectively denote the normal and the
tangential force exerted by the body on the 
ow, with n the unit normal

vector to the body oriented towards its interior.
The calculation of Uloc and W satisfying the above boundary conditions

is then obtained by the Domain Decomposition Time Marching Algorithm,
which was introduced by Le Tallec and Tidriri ([6], [9] and [10]) and which

leads to the following algorithm :

Initialization

1. Guess an initial distribution of the conservative variable W in the
global domain 
 ;

2. Advance in time this distribution by using the global Navier-Stokes

solver on N1 time steps, with Dirichlet type boundary conditions on the body
�o ;
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3. Deduce from this result an initial distribution of the local variable Uloc

on the interface �i and in the local domain 
V ;

4. Advance in time this distribution by using the local solver on N2 time

steps with Dirichlet boundary conditions on �i and �o.

Iterations

5. From Uloc, compute the friction forces n � �(Uloc) � � and heat 
ux

q(Uloc) � n on the body �o ;

6. Advance the global solution in time (N1 steps) by using the global

Navier-Stokes solver with the above viscous forces as boundary conditions
on �o;

7. From W , compute the value of Uloc on the interface �i ;
8. Using this new value as Dirichlet boundary conditions on �i, advance

the local solution in time (N2 steps) and go back to step 5 until convergence

is reached.
This algorithm completely uncouples the local and the global problems

which can therefore be solved by independent solvers.
A parallel version is also quite possible although it is generally wiser to

use parallel solvers within steps 6 and 8.

Remark 2.1 The local problem can be either Navier-Stokes or Boltzmann

equations (see [6]-[10]).

2.2 The global Navier-Stokes problem

The global domain 
 is discretized using node centered cells de�ned on an

unstructured grid. Then, at each time step n and for each cell i, we solve

Z
Ci

W n+1 �W n

�t
+
X

j2V (i)

Z
@Ci\@Cj

FC(W
n+1) � ni

+
Z
@Ci��

FD(W
n+1) � ni +

Z
@Ci\�1

F (W n+1) � ni = �

Z
@Ci\�o

Fo � ni:

The 
uxes FC and FD are computed at time step n+ 1 and linearized, with
for example FC computed by an Osher approximate Riemann solver [9], and
[10].
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On the body �o, because of our special choice of boundary conditions,

the 
ux is given by

Z
@Ci\�o

Fo � ni =
Z
@Ci\�o

0
BBB@

0
ni � �(W

n+1) � ni
ni � �(Uloc) � �i
�q(Uloc) � ni

1
CCCA ;

where the aspect of a boundary cell Ci is described in Fig. 2.
In other words, friction forces and heat 
ux are given explicitly as pre-

dicted by the local solver and the mass 
ux is imposed to zero. Then, in

order to have a well-posed problem, at least in the incompressible case (see
next paragraphs), the normal stress (the multiplier of the zero mass 
ux con-
straint) cannot be imposed and must be obtained from the solution W n+1.

Remark 2.2 Imposing friction forces to the global solution instead of no
slip boundary conditions allows to have an accurate solution away from the
boundary layer even with a coarse mesh (see [9]).

3 Strong formulation

Let 
 be the domain occupied by the 
uid, � its boundary as described in

�gure (1); we assume that 
 satisfy :

8>>>>>>>>><
>>>>>>>>>:


 is a simply connected bounded domain in IRN ;

� = @
 is of class C1;

�b [ �1 = � and �b \ �1 = ;;

�b and �1 are compacts of nonzero measure:

(1)
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In the steady incompressible case, the global problem in the coupling

strategy described above consists in �nding u and p satisfying the following

equations :

���u+ uru+rp = f in 
; (2)

divu = 0 in 
; (3)

u � n = 0 on �b; (4)

u = h on �1; (5)

�(ru � n)� = g� on �b; (6)

where n is the unit normal to �, � is any unit normal to n.

We look for weak solutions of problem (2)-(6), i.e. (2), (3) are satis�ed
in a distribution sense and equations (4)-(6) are satis�ed in some Sobolev
spaces.

Remark 3.1 From the remark (2.1) we observe that g� can be issued from
a local kinetic model (Boltzmann equations) or a local continuous model
(Navier-Stokes system).

4 Preliminary results

Let Hm� 1

2 (�) be a space of trace functions in Hm(
) with the following

norm :

k km� 1

2
;� = inffkukm;
=u 2 H

m(
); uj� =  g; (7)

and V the closed subspace of (H1(
))N de�ned by

V = fv 2 (H1(
))N jdivv = 0; v � n = 0 on �b; v = 0 on �1g; (8)

and de�ne

kvk = krvk0;2;
: (9)

We have the following classical lemma.
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Lemma 4.1 k:k is a norm of V equivalent to the norm k:k1;2;
.

Lemma 4.2 ([11]) Under hypothesis (1), we have

n : � ! IRN (10)

x ! n(x)

is C1 and hence, the trace operator

(H1(
))N ! H
1

2 (�) (11)

u! u � n

is continuous.

Lemma 4.3 ([14]). Let 
 satisfy (1). We have :
The injection

W 1;p(
) � Lq1(
)

is compact for q1 satisfying :

1 � q1 <1 if p � N (12)

1 � q1 < q with q given by
1

q
=

1

p
�

1

N
if 1 � p < N: (13)

In particular we have for p = 2 :

H1(
) � Lq(
) for 2 � q �
2N

N � 2
;

the injection being continuous. For N = 2, this injection takes place for any

�nite q such that q � 2.

Lemma 4.4 ([12]) Let 
 be a bounded connected domain. Then

(i) The operator grad is an isomorphism from L20(
) into V
0,

(ii) the operator div is an isomorphism from (V 0)? into L20(
)

where L20(
) and V
0 are de�ned by

V 0 = fh 2 H�1(
)N ; < h; v >= 0;8v 2 V g:

L20(
) = fh 2 L20(
);
Z


h(x)dx = 0g:
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We now set

b(u; v; w) =
NX

i;j=1

Z


uj
@vi

@xj
widx; u; v; w 2 V (14)

< f; v >=
Z


fvdx; v 2 V (15)

< g� ; v >�b
=
Z
�b

g�� � vd
; v 2 V (16)

((u; v)) =
Z


rurvdx; u; v 2 V (17)

(u; v) =
Z


uvdx; u; v 2 V: (18)

If f is in (H�1(
))N and g� in H
�

1

2 (�b) all the above operators (14)-(18)
are well posed. Moreover, the operator de�ned by (16) and the trilinear form

de�ned by (14) satisfy the following properties :

Lemma 4.5 The mapping from V into IR de�ned by (16) is continuous.

Proof: The proof follows directly from lemma 4.2.

Lemma 4.6 (i) The trilinear form b is continuous on V 2 � (V \ (LN (
))N

(ii) Let u; v; w 2 V . Then we have the following relations :

b(u; v; w) = �b(u;w; v); (19)

b(u; v; v) = 0: (20)

(iii) Let fungn�0 be a sequence in V such that un * u weakly in V . Then :

lim
n!1

b(un; un; v) = b(u; u; v);8v 2 V: (21)

Proof

We present only the proof of (i) and (ii). For the proof of (iii), see [14] or

[13].

(i) Let u 2 V then ui 2 H
1(
) ; from lemma 4.3, we deduce :

ui 2 L
q(
);

1

q
=

1

2
�

1

N
;
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which implies

j

Z


uj
@vi

@xj
widxj � kujk0;q;
k

@vi

@xk
k0;q;
kwik0;N;


� CkujkV kvikV kwikV : (22)

Therefore we conclude to our result.

(ii) By de�nition

b(u; v; w) =
Z


uivj;iwj:

After integration by parts, we obtain

b(u; v; w) = �

Z


vj(uiwj);i +

Z
@

u � nv � w

= �
Z


vjuiwj;i �

Z


vjwjui;i +

Z
@

u � nv � w:

Since u 2 V , we have u�n = 0 on @
 and ui;i = divu = 0 on 
. Therefore,
we get

b(u; v; w) = �
Z


vjuiwj;i = �b(u;w; v):

Remark 4.1 For N � 4, it follows from lemma 4.3 that V \ (LN (
))N = V

5 Existence Result

We now go back to our initial formulation:
Find u and p such that :

���u+ u � ru+rp = f in 
; (23)

divu = 0 in 
; (24)

u � n = � on �b; (25)

u = h on �1; (26)

�(ru � n)� = g� on �b: (27)
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5.1 Hypothesis on � and h

The data � on �b and h on �1 must verify some regularity and compatibility

properties. More precisely we assume that :

h 2 (H
1

2 (�1))
n; (28)

� 2 H
1

2 (�b); (29)

Z
�1

h � n = 0; (30)

Z
�b

� = 0: (31)

Lemma 5.1 The relations (28)-(31) imply the existence of ~u 2 (H1(
))N

such that :

r:~u = 0 in 
; (32)

~u � n = � on �b; (33)

~u = h on �1: (34)

Proof

Let  be a function de�ned on � such that :

 =

8<
:
� � n on �b;

h on �1:
(35)

From the assumed hypothesis, on �; � and h we get :

 2 (H
1

2 (�))N :

Therefore, from the trace theorem, we can take u 2 H1(
)N such that :
uj� =  . By using the relations (30) and (31) and the Green Formula, we

obtain Z


r � u = 0:
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Using the regularity of u, we have r � u 2 L20(
).

Lemma 4.4 shows that there exists v 2 H1
0 (
)

N such that r � v = r � u.

Finally, by taking now ~u = u�v, we can see easily that ~u verify the relations

(32)-(34).

Now, we are going to pick out some function � in H1(
) such that :

~u = rot�: (36)

To achieve this, we will use the following proposition :

Proposition 5.1 ([13]) Under the regularity hypothesis (1) and for N = 3
we have

rotH1(
) = fu 2 L2(
)N ; divu = 0;
Z
�b

u � n =
Z
�1

u � n = 0g (37)

Remark 5.1 This result is also valid for N = 2 ([13]).

Under the hypothesis (30)-(31) and the relations (32)-(34) we have :
Z
�b

~u � n =
Z
�b

� = 0; (38)

Z
�1

~u � n =
Z
�b

h � n = 0: (39)

Consequently, from Proposition 5.1, there exists � 2 H1(
), such that we
have (36). From now on we assume that N � 3.

5.2 Weak formulation

Let u 2 V . After multiplication of (23) by v, integration by parts and by
taking into account the boundary conditions (25)-(27) and the relation (24)
we obtain the following variational formulation :

8>>>>>>>>><
>>>>>>>>>:

Find uo 2 V such that

�((uo; v)) + b(~u; uo; v) + b(uo; ~u; v) + b(uo; uo; v)

= ��((~u; v))� b(~u; ~u; v) +
Z
�b

g�� � v +
Z


fv;

8v 2 V \ LN (
)N

(40)
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5.3 Equivalence between the two formulations

We will show here that the variational formulation (40) is equivalent to the

strong formulation. This is the goal of the following proposition :

Proposition 5.2 If (u; p) is a smooth solution of (2)-(6), then it satis�es

(40). Conversely, if uo is solution of (40), then there exists a unique function

(up to a constant) p 2 L2(
) such that uo + ~u and p satisfy :

(i) (2) and (3) in a distribution sense,

(ii) (4) in H
1

2 (�b),

(iii) (5) in H
1

2 (�1),

(iv) (6) in H�
1

2 (�b).

Proof

The direct theorem was showed in our introduction of the weak formula-
tion. We then show only the converse.

Let
V = f 2 (H1

0 (
))
N=div = 0g:

Let uo be a solution of problem (40) then after multiplication by a test

function in D(
), and integration by parts and density, we get

< ���u+ (u � r)u� f;  >= 0;8 2 V (41)

where <;> denotes now the duality between the spaces D0(
)N and
D(
)N . We consider the operator �grad(= �r) 2 L(L20(
);H

�1(
)N),

and R(�grad) its image in H�1(
)N . We have the following lemma ( see
[12])

Lemma 5.2 R(�grad) is identical to Vo with Vo de�ned by :

Vo = fh 2 H�1(
)N= < h; >= 0;8 2 Vg:
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The application of this lemma implies the existence of p 2 L20(
) such

that

���u+ u � ru� f +rp = 0 in (H�1(
))N :

As u 2 V , u � ru and f 2 L2, then

���u�rp = div(��ru+ pId)

= (f � u � ru) 2 (L2(
))N :

Applying the Green formula implies that there exists

q = (��ru+ pId) � n 2 H�
1

2 (@
)

such that
Z


�div(��ru+ pId) � v

+
Z


�rurv �

Z


pdivv =

Z
@

q � v; 8v 2 (H1(
))N :

By replacing div(��ru+ pId) by (f � u � ru) we get

�((u; v)) + b(u; u; v)�
Z


pdivv �

Z
@

q � v �

Z


fv = 0 (42)

8v 2 (H1(
))N :

By subtracting (43) from (40), it remains

Z
@

q � v �

Z
�b

g� (v � � ) = 0; 8v 2 V:

Now let w arbitrary element of H
1

2

00(�b), where H
1

2

00(�b) is de�ned by :

H
1

2

00(�b) = fv 2 L2(�b);9w 2 H
1(
); w = 0 on �1 andw = v on �bg

(see [11] for more details about this space).
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Let v 2 V such that

v � n = 0 on �b;

v � � = w on �b;

v = 0 on �1:

Applying the precedent equality, it remains
Z
�b

q � �w =
Z
�b

g�w;8w 2 H
1

2

00(�b);

therefore

q � � = � � (��ru+ pId) � n

= g� in H�
1

2 (�b):

Remark 5.2 We cannot impose the normal stress in (3)-(7) because of the
presence of a pressure term in q.

5.4 Existence result

Now, we are able to set out the main result of this section.

Theorem 5.1 Let f 2 H�1(
) ; then there exists uo 2 V solution of (40).

Proof

We proceed as in the usual proof of existence for the incompressible

Navier-Stokes equations. Let us de�ne

[ m(u); u] = �kuk2 + �((~u; u)) + b(~u; ~u; u)�
Z
�b

g��u

�
Z


fu + b(u; ~u; u):

By using the continuity of b we obtain :
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b(~u; ~u; u) � c1k~uk0;q;
k~uk1;2;
kuk0;N (43)

with q satisfying (12)-(13). In addition we have :

b(~u; ~u; u) � c2k~uk
2
1;2;
kuk: (44)

Using lemma 4.1 and lemma 4.2 we arrive to :

[ m(u); u] � �kuk2 + b(u; ~u; u)

�kuk(�k~uk+ c2k~uk
2
1;2;
 + c3kg�k� 1

2
;�b

+ kfk�1;2;
):

So, to be able to use the Brouwer �xed point theorem, it is su�cient to
show that we have for some � > 0, the following relation :

�kuk2 + b(u; ~u; u) � �kuk2;8u 2 V: (45)

This is the goal of the following lemma :

Lemma 5.3 8 
 > 0 we can choose ~u verifying (32)-(33) such that

jb(u; ~u; u)j � 
kuk2: (46)

From the above lemma, we conclude to the existence of a given k such
that

[ m(u); (u)] > 0;

for any u 2 V with kuk = k. Then the Brouwer �xed point theorem can be

applied to the function  m(u) inside any ball of radius k belonging to any
given �nite dimensional approximation Vm of V . From this, we deduce the

existence of a Galerkin approximation um 2 Vm of the solution u of (40). By
standard compactness arguments, it follows that um weakly converges to a

solution uo of (40) in V . (see [5] for more details).
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6 Uniqueness results

Under the assumption that N � 3, we have the following result :

Theorem 6.1 Assume that ~u in (LN (
))N is su�ciently small so that

jb(v; ~u; v)j �
�

2
kvk2;8v 2 V; (47)

and � is su�ciently large so that

�2 > 4C(k ~fkV 0 + kg�k� 1

2
;�b
) (48)

where C is the constant in (22) and

~f = ��~u� �j~uj
@

@xj
~u+ f

and

~g� = �
@

@n
~u+ g�

Proof

We procced as in the proof for the standard homogeneous boundary con-
ditions (see for instance [13]).

Suppose that uo is solution of the problem (40). Taking v = uo in (40)
and using (20), we obtain :

�kuok
2
V = �b(uo; ~u; uo)� �((~u; uo))� b(~u; ~u; uo)+

Z
�b

g�� �uo+
Z


fuo; (49)

Using the Green formula, we obtain

�kuok
2
V = �b(uo; ~u; uo)+ < ��~u� �j ~uj

@

@xj
~u+ f; uo > (50)

+ < �
@

@n
~u+ g� ; uo >�b

(51)

= �b(uo; ~u; uo)+ < ~f; uo > + < ~g� ; uo >�b
(52)
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Since f 2 (H�1(
))N and ~u 2 (H1(
))N , �~u 2 (H�1(
))N and then
~f 2 (H�1(
))N . Similarly, since g� 2 (H�

1

2 (�b))
N and ~u 2 (H1(
))N we

have
@~u

@n
2 (H�

1

2 (�b))
N and then ~g� 2 (H�

1

2 (�b))
N , and the equality above

is well de�ned. The rest of the proof is an adaptation of the proof for the

standard homogeneous boundary conditions (see for instance [13]).

7 Conclusion

In this paper we have shown that the slip boundary conditions resulting
from the application of the Domain Decomposition Time Marching Algo-
rithm to either Navier-Stokes/Navier-Stokes coupling ([9] and [10]) or Navier-
Stokes/Boltzmann coupling ([9], [7], and [8]) are admissible and lead to a well
posed global problem at least in the incompressible case.
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